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This paper deals with the stability of steady motions of rigid bodies 
with cavities filled. partially or completely, with homogeneous incom- 
pressible fluid. The investigation is based on the concepts developed by 
Liapunov [1,21 in the theory of stability of the equilibrium configura- 
tions of rotating fluids. It is shown that the problem of stability of 
uniform rotation of a rigid body with a cavity containing fluid reduces 
to the investigation of the conditions of minimum of a certain expression 
II. If the fluid Pills the cavity completely, I becomes a function of a 
finite number of variables: if the fluid fills the cavity partially, W 
represents a functional depending on the coordinates of the rigid body 
and on the form of the fluid. 

The application of the obtained theorems is illustrated by solving 
two problems of stability of steady motions of rigid bodies with cavities 
containing fluid in the following cases: (1) A free body in the Newtonian 
gravitational field with a fixed center: (2) A free body moving around a 
fixed point in a homogeneous gravitational field. These two problems are 
of considerable interest. 

1. We shall consider a rigid body with a simply-connected cavity of 

arbitrary shape filled with a homogeneous incompressible ideal fluid. We 

shall discuss simultaneously the case of the cavity filled completely 

and the case of partial filling with the fluid having a free surface 

acted upon by- constant hydrostatic pressure. 'Ihe particles of the 

fluid which are in contact with the walls of the cavity have the normal 

components of velocities equal to the normal components of velocities of 

the corresponding points of the walls. 

We shall assume that the body is subjected to scleronomic non-releas- 
ing constraints; the prescribed forces acting on the body and the mass 
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folces acting on the fluid particles have the force functions II, and U, 
which do not depend on time explicitly. We shall also assume that the 
motion of the body is continuous in time, and the fluid moves as a con- 
tinuum, i.e. the coordinates of the particles of the fluid are continuous 
functions of time and their initial positions. 

With the above assumptions, the differential equations of motion admit 
the integral of energy [3I 

T+V=h (1.1) 

where T is the kinetic energy of the system moving with respect to a 
fixed coordinate system O<T) 5, V is the potential energy of the forces 
acting on the system, h is the constant of integration. 

‘lhe position of the rigid body, with respect to the coordinate system 
O<q< will be determined by its Lagrangean coqrdinates ql, . . . . qn 

(n\<6). ‘Ihe potential energy V will be, in general, a function of the 
coordinates ql, . . . . q, (F < n) and of the configuration of the fluid. 
In the case when the fluid fills the cavity completely, the potential 
energy of the system is the function V(ql, . . . . qr). 

We shall consider that the imposed constraints allow for rotation of 
the whole system as one rigid body around a fixed axis, and that the 
forces acting on the system produce no moment with respect to this axis. 
Consequently, the potential energy of the system V does not depend on the 
angle q,, of rotation around this axis. Under these conditions, the inte- 
gral of areas exists for the plane perpendicular to the axis of rotation 
[3]. Assuming that the axis of rotation coincides with the coordinate 
axis O[ belonging to the fixed coordinate system, we write the integral 
of areas in the form 

Gc = const = k (4 4 

where C 
5 

is the projection of the angular momentum on the c-axis. 

Together with the fixed coordinate system, we shall use the coordinate 
system O<,q,c rotating around the c-axis with an angular velocity o. De- 
noting the absolute velocity vector of an arbitrary particle of the rigid 
body or the fluid by v(u~* v2, us), its position vector by r(c, q, 0, 
and its velocity vector with respect to the coordinate system O<,q,(, by 

u(u, II, ml, we have the relation 

v=u+oxr 

‘lbe kinetic energy and the projection of the angular momentum on the 
c-axis can be expressed in the form 
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TX = $ z mv (Q + vva + d), G,l = 2 ms (Evvv, - +a) 
Y Y 

denote the kinetic energy and the projection of the angular momentum of 
the motion with respect to the coordinate system clql(, and 

s = x m, (LB + rJY2) 
Y 

is the moment of inertia of the system with respect to the {-axis. In all 
the above formulas, the surmnation is performed over all the particfes of 
the system, whose masses are denoted by nv (v = 1, 2, . ..I. 

'Ihe angular velocity o of the rotation of the coordinate system clqcrlr 
ma 

Y 
be prescribed arbitrarily. We shall assume it in such a way that 

Cc = 0, i.e. the projection of the angular momentum of the relative 
motion an the c-axis is equal to zero at .any time 221. ‘Ihis is equivalent, 
in view of (1.2) and (1.31, to the equation 

OS = k (4 l 4) 
With this value of the angular velocity tl of the rotation of the co- 

ordinate system clql(, the integral. of energy (1.1) can be written in 
the form 

1Yatt. The fom (1.5) of the integrlrl of energy csn be obtirfned sLs0 

in 8 different nag by generalizing Koutii’s method of cyclic coordinates 
in the dynamics OS systems with finite number of degrees of! ireedom 141. 

With the above assumptions concerning the constraints imposed on the 
rigid body and the acting forces, the system being investigated may 
actually perform uniform rotation around the fixed g-axis as one rigid 
body. In this, the system is in equilibrium with respect to the coordi- 
nate system c1q13 which rotates around the j-axis with the angular velo- 
city oO of the uniform rotation of the system. 

In fact, the general equations of dynamics, expressing the d’Alembert- 
Lagrange principle, are valid for the actual motion of the system 

2 WKE”” - Fl”) ali* + (mf” - Fw) clq* + (n&r” - FQY) bf;“) = 0 V.6) 
Y 

Here, &‘t qv*‘, &‘” are the components of the acceleration of the vth 
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particle of the system, Flv, Fzv, F,, are the components of the given 

forces, and 6& 6q,,, 65” are the components of the virtual displacement 

vector &,. 

In the case of uniform rotation of the whole system as one rigid body 

aromd the &-axis with the angular velocity oa, we have 

end, cmseguently, equation (1.6) assunes 

or 

NJ = 0 

&zre the not&m nsed is 

the form 

+ F,,hqv + F&3 = 0 

U-7) 

u =f@ -v (1.8) 

and the t&o1 6U denotes the variation of the expression II correspond- 

ing to virtusl displacements of the system which are compatible with the 

coastrsints and do not change the volume of the fluid. 

Ibe expressi- (1.8) may be considered as the force-function of the 

given forces and centrifugal inertia forces. According to the principle 

of virtusl work, equation (1.7) represents the condition of equilibrium 

of the systa with respect to the coordinates O~,q,~ if the latter rotate 

uitb the uniform sngolar velocity oa. 

k introduce into consideration the function 

+++v (1.9) 

whore k, is the v&e of the constant k for the case of uniform rotation 

of the whole systa as me rigid hody with the angular velocity o0 about 

t,L {-axis. ‘Ibe vsriatian of this function corresponding to virtual dis- 

placcrents of the system is 

&W= -+s+W 

where S, is the value of S for the steady motion. 

E%smining 611 and 6U = 1/20,*6s - 6V, and taking into account that 

44 = ko, we conclnde that equation (1.7) is equivalent to the equation 

aw=o (1 JO) 
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Iherefore, in the case of steady rotation of the ayata, the tBpms- 

sion (1.9) has an extremal (statical) value. 

According to the definition (1.9), the function II depends on the CO- 

ordinates of the body ql, . . . . q,,_l (on which S and V also I@), on 
the form of the fluid, and on the value of the constant ks. In the case 

of complete filling of the cavity in the body, the expression II is a 
function of ql, . . . . q,l, k,. 

The quantity k, msy.be considered as a variable parameter, and the 
results of the general theory of "equilibria" of material systems with 
potential energy depending on parsmaters &I can be used. 

'Ihe condition (1.10) leads, as it is easy to see, to the equations 

aw 1 
ag,=-T*O aq, 

aas++ (i=i, ..‘, n-l) (1.11) 

for the coordinates qi (i = 1, . . . . n - 1) of the rigid body in station- 
ary motion, and to the equations for the pressure in the fluid. FIXN 
these last equations we obtain the equation 

+~S(s + q#) + U, = co& (1.12) 

for the free surface of the fluid which does not fill the catity CQ- 
pletely. Here, V,(c,q,?J denotes the force-fun&ion of the body forces 
(per unit mass) acting on the fluid, such that the potential catrgy of 
the fluid is 

V,= -p@d z ( T is volume of the fluld) 
f 

For a constant value of the parameter k,, equatiars (1.11) and (1.12) 
determine the coordinates of the rigid body and the forr of the free 
surface of the fluid in steady motion. Under co&inuoua change of the 
parameter, the real roots of equations (1.11) will change, i.e. 

together with the corresponding forms of relative equilibripr of the 
fluid. 

In the n-dimensional space (ql, ..-, qwlt he), this 1-t system of 
equations determines a real curve whose points correspapd to different 
stationary motions. Separate branches of this curve intersect at the bi- 
furcation points El, at which at least two real roots of eqmtions 
(1.11) coincide. 
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2. We shall consider a certain stationary motion of the system, cor- 
responding to a given value of the constant k,. Without loss of general- 
ity, we assume that the roots of equations (1.11) are qi = 0 (i = 1,. . 
n - 1) for the given value k,. ‘Ihus the fluid has the form of relative 
equilibrium F,, determined by the free surface era, given by equation 
(1.12) and the walls of the cavity. 

Using the integral of energy (1.5)) we shall investigate the stability 
of this steady motion of the rigid body with the cavity filled with 
fluid. 

Ihe mechanical system being investigated has n t 0~ degrees of freedom 
and it is necessary to define the concept of stability of its motion. 

In the case of complete filling, as the stability of motion we shall 
assume the stability in the sense of Liapunov [5] with respect to the 
non-cyclic coordinates ql, . . . . q,l (on which the potential energy V 
and the moment of inertia S of the system depend explicitly), general- 
ized velocities q’l, . . . , q’n_l of the body, and the kinetic energy T,“’ 
of the fluid. 

In the case of partial filling, when the fluid in the cavity has a 
free surface, the problem becomes more complicated. As it has been ex- 
plained by Liapunov [1I for fluids in general, the integral of energy is 
insufficient to indicate the character of the perturbed motion (caused 
by perturbations of its state of absolute or relative equilibrium) which 
corresponds to a stable motion in the mechanics of systems with a finite 
number of degrees of freedom. Liapunov has shown that the difficulty may 
be removed if the stable state of equilibrium is defined as the state 
which, after being subjected to sufficiently small perturbations, remains 
arbitrarily close to the original state. ‘lhis proves to be adequate, at 
least until string or leaf shaped projections form on the surface of the 
fluid. Such projections may be large in linear dimensions, but their 
volume is small and, therefore, they carry small amounts of energy. 

We shall assume the above definition and, following Liapunov, shall 
formulate certain pertinent concepts applicable to our problem. We shall 
compare the form F,, of the relative equilibrium and the form F at an 
arbitrary instant of the perturbed motion; the motion of the particles 
of the fluid will not be considered, but we shall take into account the 
value of the kinetic energy of the fluid. ‘lhe form F is determined by 
the free surface cr and the walls of the cavity which, at a given instant, 
are in contact with the fluid. If the perturbed motion is sufficiently 
close to the unperturbed motion, in the coordinate system xyz connected 
with the rigid body, the forms F, and F differ only in the free surfaces 
u,, and u. Since the fluid is incompressible, the volume of the form F is 
obviously equal to the volume of the form F,. 
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Let us consider a point P of the surface u and the point PO, nearest 

to P, of the surface oa. With changes of the position of the point P and, 

consequently, the position of the point P,, the distance I-F, changes; 

for certain positions of the point P it assumes its maximum value at a 

given instant of time. This maximum value has been called “the separa- 

tion” by Liapunov. We shall denote this quantity by 1. We shall use also 

the total deviation A of the form F from the form F, which is defined as 

the volume of the part of the form F which is within the form F. or, 
equivalently, the volume of the part of the form F, which is within the 

form F. 

It is obvious that if the separation has a given value 1, the 

deviation A has a certain exit value which can be expressed as lv( 21, 

where v(Z) is a positive function having a certain definite upper bound. 

If 1 does not exceed an arbitrary number A, the function ~(2) has a 

minimum value which is different from zero. ‘lhe minimum value of the 

deviation A for a given value of 2 is always equal to zero [21. 

&ring a continuous motion of the body and the fluid, the separation 

I and the deviation A are, obviously, continuous functions of time. 

We shall introduce now the following definition of stability of the 

motion of the system in the case of partial filling. Suppose that certain 

initial perturbations are applied to the system and we consider the sub- 

sequent perturbed motion. The considered motion of the system is stable 

if the initial value of the separation, the initial relative velocities 

of the particles of the fluid, and also the initial perturbations of the 

coordinates and velocities of the body can be selected sufficiently small 

in order to make the absolute values of the coordinates qi, the velo- 

cities qif, the kinetic energy ‘1’1(2) of the fluid, and the separation f 

smaller than certain given arbitrarily small limits, for any time, or at 

least until the deviation becanes smaller than certain given, arbitrarily 

small, values. In the opposite case the motion of the system is unstable. 

Thus, the unperturbed motion of the system is stable if for arbitrary 

positive numbers L, and L, (which may be arbitrarily small), it is 

possible to find a positive number h such that for all the initial values 

of the coordinates pi,, and the generalized velocities qio’ (i = 1, . . . . 

n - 1) of the body, of the separation I,, of the deviation A,, and of 

the relative velocities of the fluid u,,, ue, we, satisfying the condi- 
tions 
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the following inequalities are satisfied 

Here, E denotes a positive number smaller than the minimum value of 
the function v( 2) for 12 1 <L,; th e quantity ~1 may be considered as an 
admissible deviation of the fluid. \Ve note that in the case of complete 
filling of the cavity with the fluid, the condition related to (2.2) 
should be omitted. 

In the following discussion we shall encounter the concept of minimum 

of the expression 1. If W is a function W(q,, . . . , qn_l, ko), the minimum 
of this function for a fixed value of the parameter k, will be meant as 
the isolated minimum with respect to the variables ql, . . . . qn_l which 
are its explicit arguments. In the case of partial filling we shall 
assume the following definition, due to Liapunov [ll , of the isolated 
minimum of W. 

If IV,, is a minimum of the expression W for the steady motion being 
considered with qi = 0 (i = 1, . . . . n-l), 1 =O, A=O, then there 
exists a sufficiently small positive number E such that for all the 
values of the coordinates of the body qi (i = 1, . . . . II - 1) the separa- 
tion I, and the deviation A, satisfying the conditions 

(where E is a 
function v( I) 
positive, and 

I Qi I GE, I lI<EY A > El 

positive number, smaller than the minimum value of the 

for I Zt<E), all the values of the difference W - W, are 
equal to zero only if qi = 0 ( i = 1, . . . , n - 1)) 1 = 0, 

A = 0. We note that for any given value of 1 the difference W - W. may 
assume arbitrarily small values if the position of the body and the form 
of the fluid correspond to the values lqil and A which are sufficiently 
small. &t the limiting case where the condition 1 # 0 results in qi = 0 
(i = 1, . . . . n - l), A = 0 (so that W- W,, is also zero) is impossible 
if only those forms that can be taken by the fluid are considered. In 
order to remove this inconvenience the condition A > ~1 has been intro- 
duced . 

7’heorem 2.1. If for a steady motion of the rigid body with the cavity 
filled with fluid the expression 

has an isolated minimum Ws, then the motion is stable. 

Proof [21. We shall perturb the steady motion of the system considered 
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by assigning to its points certain sufficiently small initial displace- 
ments and velocities. Without external actions, the system will move 
accordingly to the integral of energy (1.5). which may be written in the 
form 

1 k’- koa 
TI+~+_zs= T1(0) + W(o) + $ ‘2 

where the superscript (0) denotes the initial value of the corresponding 
quantity, and k is the area constant of the perturbed motion. 

Let A be an arbitrarily small positive number not exceeding the number 
L1, which will always be assumed smaller than the number E introduced 
above. We denote the smallest value of the expression II by II if the 
separation 1 or one of the coordinates qi (i = 1. . . . , n - 1) has its 
absolute value equal to A, while the remaining quantities and the devia- 
tion A satisfy the conditions 

I qi I 6 4 [ll\<A, A>el 

Since, according to the assumption, the expression I has the minimum 
r0 for the steady motion, we have the inequality 

Wl>WO 

If, however, 1 and I qiI are sufficiently 
ence IR- FOl becomes arbitrarily small. We 
have the inequality 

small and A > ~2, the differ- 
assume A small enough to 

satisfied. 

I~1-%I<4 

The initial values of the coordinates qi 
selected such that the initial value of the 
the value W1 

TV(O) < WI 

and the separation 1 can be 
expression I be smaller than 

With this selection of the initial state of the system, we shall 
assume that the initial values of the coordinates Qi and the initial 
form of the fluid satisfy the inequalities 

(2.5) 

(2.6) 

For an arbitrary intial position and form of the fluid, the initial 
velocities can be chosen in such a way that the constant quantities 

$lka - kOa 1 T I(o) 

be arbitrarily small. We take the values of these constants for which 
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+*l+ - ~)+TIo+w~“)<wl (2.7) 

for auy values which mag be assumed by S if the conditions are satisfied 

ig*if4 IZIG- (2.8) 

Considering the quantity h, which appears in the definition of sta- 
bility and which determines the region of initial perturbations, we shall 
assume its value in such a way that, fulfilling the conditions (2.1). we 
can satisfy the inequality (2.7) for all the values of S under the condi- 
tions (2.8). With this choice of the initial conditions we have, accord- 
ing to the energy integral, the following relation 

TI+W<WI (2.9) 

for t &to, as long as the conditions (2.8) are satisfied. 

This implies that II < ZfZ, at least as long as 1 pii and 1 do not ex- 
ceed A. Since the initial values of the coordinates qi and the separation 
Z are, by assumption, sualler thau A. with the initial deviation A > EZ, 
~II; beorose qi, Z and A vary continuously in time, the values Iqil and 

Z cannot become larger than A without being previously equal to A. But 
the equalities 

lq*I=A fi=&...,n--l), jlf=A 

are, on the basis of (2.9) with A > EZ, obviously impossible. 

Fe inequality (2.9). with (2.5) taken into account, implies that 

11;l < L,. We therefore conclude that 

Iq(;[<L+ (i=I,...,n 

Consequently, if the uotion of the 

i.e. pi, Z and A vary continuously in 
staat of time 

- a 1 Tl(“) I < Lz 

system progresses continuousl9, 
tine. we have from the initial in- 

I Pi I < 4, lq’iI<Lp, IlI<Ll, /!f’~‘~‘l<La, A>e’ 

These inequalities hold as long as the last of them is true. The theorem 
is thus proved. 

Let us note that in the case of complete filling the conditions for Z 
aud A are superfluous aud under the ass~~tioas of the theorem we have 

I Pr I < Ll, Iqi’l<La (i=i,. .,n--l), I TI(~) 1 < Lz 

for a4 time t > te. 
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Note 2.1. Liapunov [21 noted that in order to characterize the differ- 
ences between the perturbed and unperturbed forms of the fluid, instead 
of I, we may introduce certain other quantities which become equal to 
zero only for the unperturbed form. For example, the total deviatioh A 
may be chosen as such a quantity. Then, in a similar manner as above, we 
can prove that if I has a minimum R0 for a steady motion of the body with 
the cavity partially filled rith fluid, for sufficiently small initial 
perturbations. Iqil, lqi’l (i = 1, . . . . n - 1). A and T1(*) do not exceed 
arbitrarily small values at any time prescribed. The minimum W0 should 
be understood in the sense that I - f. > 0 for all the values 1 ~i[ and 

A which do not vanish simultaneously and are smaller than certain con- 
stant limits. 

Note 2.2, If the theorem of kinetic energies and the theorem of areas 

hold for the motion of the rigid body with the cavity filled with fluid 
with respect to the mass center of the total system. then Theorem 1.1 is 
valid also for this motion. 

In this sense, Theorem 1.1 represents a generalization of the theorem 
of Liapunov concerning the stability of the equilibria ~onfi~rations 
of a rotating homogeneous fluid whose particles attract each other accord- 

ing to Newton’s ‘law. 

In fact, if the system consists only of a gravitating fluid, it is 

i ko’ f ss drdx’ --_ - 
W=Bs 2 r 

and if for an equilibrium configuration the expression n = lU’~f has its 

minimum, then this form of equilibrium is stable [l,zf. 

Conclusion. If for a state of equilibrium of a rigid body with a 

cavity filled with fluid (for k, = O), the potential energy of the system 

V has an isolated minimum VO, then this state of equilibrium is stable 

[61 . 

We note that this conclusion is valid also in the case of relative 

equilibrium of a rigid body with a cavity filled with fluid. 

Let us assume, for definiteness, that in addition to the forces de- 

rived from the force function V, nonconservative forces exist also and 

they are reducible to the moment N along the <-axis. The magnitude of 

this moment is such that the angular velocity o of rotation of the rigid 

body around the {-axis remains co&&ant at any time. In this case, in- 

stead of the integrals of energy (1.1) and the areas (1.21, we have the 
equations [41 

d(T +v) =Nodt, d% r=N 
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from which we obtain 

T+V- oGr = const 

Introducing again into considerations the moving coordinate system 
clrll[ and recalling the relations (1.31, we can represent the energy con- 
dition in the form 

T, +V -+m2S = const 

The states of relative e~ilibri~ of the rigid body with the fluid 
are determined by the condition (1.7). Repeating almost literally the 
proof of Theorem 2.1, we easily show the validity of the following 
theorem. 

Theorem 2.2. If in a state of relative equilibrium of the rigid body 
with the cavity containing a fluid the expression 

has an isolated minimum, then this state of relative equilibrium is 
stable. 

As we have already noted, if the equality (1.4) is fulfilled, the con- 
dition (1.7) is equivalent to equation (1.10). ‘Es makes possible the 
construction of the state of relative equilibrium for a constant angular 
velocity o at steady motions with the existence of the integral of areas 
(1.2). It is easy to see that if the expression W* has a minimum for a 

state of relative equilibrium, then the expression H’ has a minimum for 
the corresponding steady motion [41 also. 

In fact, let 1.a be a minimum of the expression W , i.e. in a suffi- 
ciently small vicinity of the state of relative equilibrium 

v-v,++&)>0 
and let us assume that for the corresponding steady motion W does not 

have a minimum, i.e. in a sufficiently small vicinity points exist for 
which 

Substituting SO@ for k, in the last inequality and taking into account 

the preceding inequality. we obtain 

which is impossible. consequently, if the state of relative equilibrium 
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of the rigid body with the fluid is stable for o = const, then the cor- 
responding steady motion is stable for G 5 = const also. 

Let the expression W have a minimum for a given value of the parameter 
k o, i.e. let the steady motion be stable. If we now continuously change 
the value of the parameter k,, the roots of equations (1.11) will trace 
a branch C of the “equilibrium” curve. If the expression W varies also 
continuously, then for all the points of the curve C, for which W main- 
tains its minimum value, the steady motions will be stable. ‘Ihe change 
of stability on this ,branch may occur only at the bifurcation points [5]. 

3. In the preceding considerations we have assumed that the fluid in 
the cavities of the body was nonviscous. We shall investigate now the 
motion of a rigid body with a viscous fluid, whose coefficient of visco- 
sity will be denoted by ~1. ‘Ihe motion of an incompressible fluid is de- 
scribed by the Navier-Stokes equation 

dv 
-=F+radp +vbv, dt 

div v = 0 

where v = n/p is the kinematical coefficient of viscosity, p is the 
density, and p is the hydrodynamic pre:*sure. We assume that on the free 
surface the stress vector is p, = -pp (with n being the unit vector 
normal to the free surface, pO = const), and that at the rigid walls the 
fluid does not move with respect to the rigid body [7?. 

Using the above equations and the boundary conditions for the fluid, 
as well as the equations of motion of the rigid body, it is easy to ob- 
tain the following equation for the rate of dissipation of energy 

valid under the assumption of Section 1 concerning forces acting on the 
system and continuity of its motion. 

It follows from equation (3.1) that the motion of a rigid body with a 
cavity containing fluid is not accompanied by dissipation of energy (due 
to viscosity) only if at every point of the fluid the following equations 
are satisfied 

Equations (3.2) express the conditions that the line-elements in the 
fluid neither elongate nor contract [71. ‘Ihis is possible only if the 
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fluid moves like one rigid mass together with the rigid body which en- 
closes it. 

Assuming, as previously, that the dissipative forces do not act along 

the cyclic coordinate qn and taking into account that viscous forces are 
internal forces, it is easy to establish the existence of the integral 
of areas (1.2) for the case of viscous fluid. Introducing, as in Section 
1, the system of coordinates qlyl< rotating around the axis O<, on the 
basis of equation (3.1), we obtain instead of equation (1.5) the follow- 
ing inequality 

T1 + W + $ ka ; koa < T,(O) + w(O) + + !?_I$ (3.3) 

Theorem 3.1. If for a uniform rotation of the rigid body with a 
cavity containing viscous fluid, the expression W has an isolated minimum, 
then this motion is stable, and any perturbed motion sufficiently close 
to the unperturbed rotation will approach, in the limit, the steady 
motion of the system as one rigid body, provided that the condition A>E~ 
is always satisfied. 

Proof. In this case, instead of equation (2.4) we have the inequality 
(3.3). and in order to prove the stability of uniform rotation of the 
rigid body with viscous fluid it is only necessary to repeat the proof 
of Theorem 2.1. We shall prove the second part of Theorem 3.1. 

Let us consider an arbitrary perturbed motion of the system which at 

the initial instant of time is sufficiently close to the unperturbed 
motion. Suppose that the inequality A > EI holds as long as Ill does not 

exceed L,. In this case the perturbed motion will always be sufficiently 
close to the stable unperturbed motion. According to equation (3.1). the 
total mechanical energy of the system is being dissipated during the per- 
turbed motion until the fluid and the rigid body start moving as one 
rigid mass. Under these circumstances, there are two possible conclusions: 
either the total mechanical energy continuously decreases and the system 
finally comes to rest, or the system approaches a uniform rotation as one 
rigid body which corresponds to the extremum of the expression 
1/2(k2/S) + V. The first conclusion, with C 

5 
# 0, is contradictory to the 

existence of the integral of areas (1.2), and thus only the second con- 

clusion remains valid [8]. The theorem is proved. 

Note. In a similar way we can prove also that Theorem 2.2 is true for 

the case of viscous fluid if during the motion 0 = COnSt. 

Theorem 3.2. If for an isolated steady motion of the rigid body with 

a cavity containing viscous fluid the expression W has no minimum, then 
this motion is unstable. 



Stability of stationsry notions of rigid bodies 1499 

Proaf, For the conafdered sotion let the roots of equattons (1.11) be 

Qi =O (i=l, . . . . n-f) 8mi PO = 0. %3 888OW3 that there SXiStS 8 
sufficiently small positive number L, such that if all the coordinates 

pi and the separation 1 satisfy the conditions 

(3.4) 

the expression t has no extremum except at the point qi = 0 (i = I, .*.* 
n-l)* 2 = 0. This assumption implies that the investigated steady 
motion proves to be isolated. Since R does not have a minimum for this 

motion, within the region (3.4) another region exists where II < 0. Thus, 
in a region of small absolute v8luss of the coordfnates qi, the seRara- 
tion 1, and the relative velocities pi’, CL, v, wr we aan find - under 
our assumptions - the region of arbitrarily saPal1 vslttss of the coordi- 
nates and velocities for which 

We select the initial PSrtnrb8tionS from this region in such a ray 
that the area constant k remains equal to kg. fror t >r ta* the system 
moves aecordfng to the relation (3.3), which in present oondftions takes 
the form 

Suppose, coutradict~ng the proPosition, that the mowion is stable. 
This a#ana, according to the definition, that at any time, or 8t least 
as long as d > ~2, the conditions (2.3) 8re satisfied. 

If these conditions are satisfied, it is obviously possible to find a 
positive number L, depending on L1 and L2, whioh gives the upper bound 
for the absolute value of the mechanical snerey of the system 

But in the region determined by the inequalities (2.3), euuations 
(3.2) are never td%nticaIly satisfied, except for the unperturbed motion 
being investigated. Consequently, the energy of the system will be con- 
tinually dissipated and it wtfl increasingly dtffer from its initial 
value, Finally, the absolute value of the ener&y uill exoeed L, and this 
contradicts the condition (3.5). Therefore, the system will move beyond 
the region (2.3). The theorem is thus proved. 

4. We shall consider now the problem of stability of steady motion of 
a rigid body, with a cavity filled completely with fluid, attracted 
according to Newton’s Law by a fixed center, 

The center of attraction 0 will be assumed as the origin of the fixed 
coordinates U@& while the mass center OI. of the body with the cavity 
containing fluid, will be assumed as the origin of the moving axea x,y,s 
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which coincide with the principal axes of inertia of the system. The posi- 

tion of the system is determined by the coordinates 5, z), i of the mass 

center 01, and the three Eulerian angles. Introducing spherical coordi- 

nates R, v, p of the mass center, we have 

E = Rcos$coscp, 7 = R cos 11, sin cp, 5 = R sin $ (4.1) 

The potential energy of the attractive forces can be represented with 

sufficient accuracy in the form [9] 

(4.2) 

Here, f is the gravitation constant; M is the mass of the system; A, 

B, C are the principal central moments of inertia of the system; yl, ys, 

yf are the directional cosines of the line 001, with respect to the axes 

z, y, z. The moment of inertia of the system with respect to the axis O< 

is 

S = MR2 cos2 I$ + AP,2 + Bpz2 + Cpa2 (4.3) 

where Pl, Pg. BS are the directional cosines of the axis 05 with respect 

to the axes X, y, z. 

The quantities Pi and yi are connected by the obvious relations 

T12+T22+n2=1, w+ Pza+ P32 = 1 

Eliminating p2 and y3 from (4.2) and (4.3) by the use of the above re- 
lations we obtain 

A+B-2C 
v=-f%+~~~[(A-CC)112+(B-CC)7P- 3 

I 

of 

S=MR2cos~~+B+(A-B)~,2+(C--)~~2 (4.4) 

Equations (1.11) are, in this case, satisfied by the following values 

the variables [91 

R = Ro, 4=0, P1= P3== 0, T1= rz = 0 (4.51 * 

with the constant R, satisfying the equation 

(4.6) 

where 

So = MR,2 + B, /co = so00 

The particular solution (4.5) describes the motion of the mass center 

of the system 01 along a circular orbit of the radius Ru situated in the 

plane O&-b with the angular velocity o,,; the axis 01~ coincides with the 
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line Oo,, the axis O1x is tangent to the orbit, and the axis Oly is 
parallel to the axis 05. This motion will be assumed as the unperturbed 
motion, and we shall investigate its stability. 

For this purpose, it is necessary to find the conditions for a minimum 
of the function W corresponding to the motion (4.5). With (4.5) and (4.6). 
we have 

c&jgM(1-4g-)-;A+~O~2C (1+43] 

PW 
w = MR&oi,~, g = (B - A) 002, gjJ$ = (B - C) 002 

SW . 
~=3jgA-C), 

SW 
~=3j$(R-C) 

and all the remaining second derivatives of the function W equal identi- 
cally to zero. 

Thus, the conditions for a minimum of the function I reduce to the in- 

equalities 

B>A>C (4.7) 

which, according the Theorem 2.1. represent the sufficient conditions of 
stability of the unperturbed motion (4.5). of the rigid body with a 
cavity containing fluid, with respect to the variables [IO] 

R, 9, ~1, ‘rz, ‘rs, PI, Pz, P3 

In the case of a viscous fluid, with the conditions (4.7). the per- 
turbed motion will damp out approaching the steady motion in the form of 
uniform rotation of the whole system around the vector of angular 
momentum. 

5. As the second example, we shall consider the problem of stability 
of the rotation around the vertical axis of a heavy rigid body with a 
cavity containing fluid, whose one point 0 is fixed. The fixed axis 5 
will be directed vertically upwards. and we shall introduce a moving co- 
ordinate system OX~Z connected with the rigid body. 

The potential energy V and the moment of inertia with respect to the 
g-axis are 

~=Mg(~o~l+Yorz+zo~l-~r12-~~~) (5.1) 

S = (A - C) n2 + (B - C) rza + C - 2 (DTZ + ETI) I’-1 - r12 - T.? - 2Fwr2 

where M, x0, yo, zo, are the mass and the coordinates of the mass center 
of the system; g is the acceleration in the gravity field: A, B, C, D, 
E, F are the moments and products of inertia with respect to moving axes; 
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71, Yp Y3 = J(1 - Y12 - y22) are the direction cosines of the <-axis 
with respect to the axe? x, y, z. Equations (1.11) are. in this case, 

8W 
- =-_oo2 

m2+ &I) 71 

an 
(A--)TI--~~-TI~ -~2~--Fr2 +~~__l~_~~~ + 1 

YO- VI ~;$+ = o 1 
For any magnitude of the angular velocity o,,, they are satisfied if 

T1= r1= 0 (5.2) 

D=E=O, 20 = yo = 0 (5.3) 

i.e. if the axis of rotation x coincides with the vertical axis and is a 
principal central axis of inertia of the system. 

We assume the above conditions. and we shall consider that the axes x 
and y also coincide rlth the remaining principal axes of inertia of the 
system passing through the point 0. 

With the conditions (5.2) we have 

@s = (C - A) too’ - Mgro, 
PW 
w = (C - m 00% - Mgzo, 

a2w 
--0 
arlab - 

In the case of complete filling of the cavity with fluid, the condi- 
tions for a minimum of the function R(y,, y2, ko) reduce to the follon- 
ing lnequal It ies 

(C--A)&-Mgzo>O, 

which. according the Theorems 2.1 and 
of stability of a heavy unsymmetrical 
fluid [ll] . 

(C-B)ah)%-Mgzo>O (5.4) 

3.1. are the sufficient conditions 
top with a cavity filled with 

If the fluid gartlally fills the cavity, then equation (1.12) of its 
free surface u,, is, in the investigated steady motion, that of a para- 
boloid of revolution 

$00’ (9 + y’) - gz = const (5.5) 

The .form F of the fluid in a perturbed motion can be produced by 
superimposing a layer of fluid of variable thickness x on the free sur- 

face (5.5) of the unperturbed form F,., [41. Since the volume F is equal 
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to the volume PO, the condition should be satisfied 

s Xda = 0 

In the case of 8 stsble motion of the top with the fluid, the quantitg 

x is of the same order as the quantities y1 and yz; therefore, neglect- 

ing small quantities of higher order, we have 

(5.6) 

w - wo = f { [(C - A) okI% - Mgzo] r1* + [(C - 3) 00% - Mgz,] +f,s + 

a 
$5 (s P (9 + ~9 xdo )I a f... 

% 
In this, we have used the examples of the calculations of the integrals 

over the volume T of the perturbed form F, developed in the theory of 

stability of the equilibrium configurations of rotating fluids [4]. 

The relation (5.7) indicates that the conditions (5.4) are necesssrx 

for the expression I to have a minimum for a steady motion of the top 

with a cavity partially filled with fluid 111. 

Rough estimates of the sufficient conditions for a minimum of the ef- 
pression R can be obtained by writing the right-hand side of equation 

(5.7) under the integral over the surface u@,and requiring that the inte- 

grand be positive-definite with respect to the Variables yl, yz, x. 

The sufficient condition of stability of the top with a cavity 

partially filled with fluid, can be derived by expanding the quantity x 

in a series of a complete system of eigenfunctions of the corresponding 

efgenvalue problem. 

Let us assume, e.g. that the cavity has the form of a body of revolu- 
tion whose sides are generated by rotating a convex plane curve around 

the z-axis. while the top 8nd the bottom are plsnes 

z=h-c, z=h+e 

We assume, for simplicity, that the square of the angular velocity 

oo*Z+2g(h f-c) (5.8) 

and thus, the free surfsee (5.5) is not very different from the circular 

cylinder 
a? + ya = as 
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Neglecting that small difference we can assume 

03 

El21 

x=x (A cosp+Brsincp)eos$(z-_++c) 
k==o 

and we obtain, according to the relation (5.7) 

(5.9) 

O" A2j+l Tl + '2j+l T2 
+ 4fmca*ha (Aod + BOYS) - 16pa%oa ; x (2j + 1)” + 

j=O 

k=l 

It is easy to show that the right-hand side of this equality is posi- 

tive-definite with respect to the variables yl, ~2, Ak, Bk (k = 0,1,2.. .) 
if the single condition is satisfied 

3hs + c2 
C-A-Zpmb~ oo*-Mg&J> 0 (5.90) 

with A > 8. 

Adcording to Theorems 2.1 and 3.1, the equality (5.10) with the con- 
dition (5.8) is, in first approximation, tbe sufficient condition of 
stability of rotation around the vertical axis of 8 heavy top with a 
cavity partially filled with fluid. Tbe quantities A, 8, C, and te, in 
the inequality (5.10), should be calculated for the unperturbed Position 
of the top and fluid. 

The author expresses his gratitude to L.N. Sretenskii for discussing 

this paper. 
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