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This paper deals with the stability of steady motions of rigid bodies
with cavities filled, partially or completely, with homogeneous incom-
pressible fluid. The investigation is based on the concepts developed by
Liapunov [1,2] in the theory of stability of the equilibrium configura-
tions of rotating fluids. It is shown that the problem of stability of
uniform rotation of a rigid body with a cavity containing fluid reduces
to the investigation of the conditions of minimum of a certain expression
. If the fluid fills the cavity completely, W becomes a function of a
finite number of variables; if the fluid fills the cavity partially, W
represents a functional depending on the coordinates of the rigid body
and on the form of the fluid.

The application of the obtained theorems is illustrated by solving
two problems of stability of steady motions of rigid bodies with cavities
containing fluid in the following cases: (1) A free body in the Newtonian
gravitational field with a fixed center; (2) A free body woving around a
fixed point in a homogeneous gravitational field. These two problems are
of considerable interest.

1. We shall consider a rigid body with a simply-connected cavity of
arbitrary shape filled with a homogeneous incompressible ideal fluid. We
shall discuss simultaneously the case of the cavity filled completely
and the case of partial filling with the fluid having a free surface
acted upon by v constant hydrostatic pressure. The particles of the
fluid which are in contact with the walls of the cavity have the normal
components of velocities equal to the normal components of velocities of
the corresponding points of the walls.

We shall assume that the body is subjected to scleronomic non-releas-
ing constraints; the prescribed forces acting on the body and the mass
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toices acting on the fluid particles have the force functions U; and U,
which do not depend on time explicitly. We shall also assume that the
motion of the body is continuous in time, and the fluid moves as a con-
tinuum, i.e. the coordinates of the particles of the fluid are continuous
functions of time and their initial positions.

With the above assumptions, the differential equations of motion admit
the integral of energy [3]

T +V=nh (1.1)

where T is the kinetic energy of the system moving with respect to a
fixed coordinate system O0&n{, V is the potential energy of the forces
acting on the system, h is the constant of integration.

The position of the rigid body, with respect to the coordinate system
O0&§n{ will be determined by its Lagrangean coordinates q,, ..., q,

(n<6). The potential energy V will be, in general, a function of the
coordinates ¢,, ..., q, (r<<n) and of the configuration of the fluid.
In the case when the fluid fills the cavity completely, the potential

energy of the system is the function V(q,, ..., ¢,).

We shall consider that the imposed constraints allow for rotation of
the whole system as one rigid body around a fixed axis, and that the
forces acting on the system produce no moment with respect to this axis.
Consequently, the potential energy of the system V does not depend on the
angle g, of rotation around this axis. Under these conditions, the inte-
gral of areas exists for the plane perpendicular to the axis of rotation
[3]. Assuming that the axis of rotation coincides with the coordinate
axis Ol belonging to the fixed coordinate system, we write the integral
of areas in the form

Gy = const = k (1.2)
where G§ is the projection of the angular momentum on the {-axis.

Together with the fixed coordinate system, we shall use the coordinate
system OE,n,{ rotating around the {-axis with an angular velocity @. De-
noting the absolute velocity vector of an arbitrary particle of the rigid
body or the fluid by v(v,, v,, v3), its position vector by r(§, n, 0,
and its velocity vector with respect to the coordinate system O§n,(, by
u(u, v, w), we have the relation

v=u-teoXr

The kinetic energy and the projection of the angular momentum on the
{-axis can be expressed in the form
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T =T, + oGl +50%, G =G+ oS (1.3
Here,

TI = -;—qu (wv2 + vv2 + wuz), G 1 == zm\f (gvv\f - nvu‘i)

denote the kinetic energy and the projection of the angular momentum of
the motion with respect to the coordinate system §n,{, and

S = va (§v2 + nvz)

is the moment of inertia of the system with respect to the [-axis. In all
the above formulas, the sumation is performed over all the particles of
the system, whose masses are denoted by m, (v =1, 2, ...).

The angular velocity @ of the rotation of the coordinate system §;n,{
may be prescribed arbitrarily. We shall assume it in such a way that
Gyt =0, i.e. the projection of the angular momentum of the relative
motion on the {-axis is equal to zero at any time [2]. This is equivalent,
in view of (1.2) and (1.3), to the equation

©S =k (1.4)

With this value of the angular velocity ¢ of the rotation of the co-
ordinate system §;n,, the integral of emergy (1.1) can be written in
the form

T+ E v =0 (1.5)

Note. The form (1.5) of the integral of energy car be obtained also
in a different way by generalizing Routh’s method of cyclic coordinates
in the dynamics of systems with finite number of degrees of freedom [4].

With the above assumptions concerning the constraints imposed on the
rigid body and the acting forces, the system being investigated may
actually perform uniform rotation around the fixed [-axis as one rigid
body. In this, the system is in equilibrium with respect to the coordi-
nate system §;n,( which rotates around the {-axis with the angular velo-
city wy of the uniform rotation of the system.

In fact, the general equations of dynamics, expressing the d'Alembert-
Lagrange principle, are valid for the actual motion of the system

2{(%&”» — Fp) 88 + (moy's — Fy)) 00y + (mu0y — Fsu) 8L} = 0 (1.6)

Here, £," n," [,” are the components of the acceleration of the vth
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particle of the system, F, , F, , F,, are the components of the given

forces, and 8§, &, 5, are the components of the virtual displacement
vector &r,.

In the case of uniform rotation of the whole system as one rigid body
around the [-axis with the angular velocity w,, we have

E.v = — (-).’Ev, ﬂ'v = — mozﬂv, C"v =0

and, consequently, equation (1.6) assumes the form
30 P m, (82 + 02 + D (FudE, + Fadny + Fodl) = 0

or
ol = 1.7)
where the notation used is
U= —:-(0028 -V (1.8)

and the symbol 5U denotes the variation of the expression U correspond-
ing to virtual displacements of the system which are compatible with the
constraints and do not change the volume of the fluid.

The expression (1.8) may be considered as the force-function of the
given forces and centrifugal inertia forces. According to the principle
of virtual work, equation (1.7) represents the condition of equilibrium
of the system with respect to the coordinates Of,n;,{ if the latter rotate
with the wmiform angular velocity o,.

We introduce into consideration the function

1 3
w=32+v 1.9)

where k, is the value of the constant k for the case of uniform rotation
of the whole system as one rigid body with the angular velocity @, about
the [-axis. The variation of this function corresponding to virtual dis-
placements of the system is

1 ko

where S, is the value of S for the steady motion.

Examining 5F and 85U = 1/2 90258 — &V, and taking into account that
@ySy = kg, we conclude that equation (1.7) is equivalent to the equation
W =20 (1.10)
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Therefore, in the case of steady rotation of the system, the expres-
sion (1.9) has an extremal (stationary) value.

According to the definition (1.9), the function W depends on the co-
ordinates of the body q;, ..., q,-, (on which S and V also depend), on
the form of the fluid, and on the value of the constant k,. In the case
of complete filling of the cavity in the body, the expression W is a
function of q,, ..., g, ;. ko.

The quantity k; may be considered as a variable parameter, and the
results of the general theory of "equilibrium" of material systems with
potential energy depending on parameters [5] can be used.

The condition (1.10) leads, as it is easy to see, to the equations

W _ 1,295 L W _ _ _ 1
aqi = 5 @ aqi + aqi - (l‘ - ’-1 e, B 1) (i' )
for the coordinates q; (i =1, ..., n - 1) of the rigid body in station-

ary motion, and to the equations for the pressure in the fluid. From
these last equations we obtain the equation

_;_moa (82 + 0®) + U, = const (1.12)

for the free surface of the fluid which does not fill the cavity com-
pletely. Here, U,(§,n,{) denotes the force-function of the body forces
(per unit mass) acting on the fluid, such that the potential energy of
the fluid is

V, = — pS U,dt (T is volume of the fluid)

For a constant value of the parameter k;, equatioms (1.11) and (1.12)
determine the coordinates of the rigid body and the form of the free
surface of the fluid in steady motion. Under continuous change of the
parameter, the real roots of equations (1.11) will change, i.e.

o =9l (k)

together with the corresponding forms of relative equilibrium of the
fluid.

In the n-dimensional space (q), ..., g, ,, k), this last system of
equations determines a real curve whose points correspond to different
stationary motions. Separate branches of this curve intersect at the bi-
furcation points [5], at which at least two real roots of equations
(1.11) coincide.
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2. We shall consider a certain stationary motion of the system, cor-
responding to a given value of the constant ky. Without loss of general-
ity, we assume that the roots of equations (1.11) are ;=0 =1,...,
n - 1) for the given value ky. Thus the fluid has the form of relative
equilibrium F), determined by the free surface 0y, glven by equation
(1.12) and the walls of the cavity.

Using the integral of energy (1.5), we shall investigate the stability
of this steady motion of the rigid body with the cavity filled with
fluid.

The mechanical system being investigated has n + @ degrees of freedom
and it is necessary to define the concept of stability of its motion.

In the case of complete filling, as the stability of motion we shall
assume the stability in the sense of Liapunov [5] with respect to the
non-cyclic coordinates q,, ..., gq,-; (on which the potential energy V
and the moment of inertia S of the system depend explicitly), general-

ized velocities ¢, ..., ¢’ _; of the body, and the kinetic energy Tl(z)
of the fluid.

In the case of partial filling, when the fluid in the cavity has a
free surface, the problem becomes more complicated. As it has been ex-
plained by Liapunov [1] for fluids in general, the integral of energy is
insufficient to indicate the character of the perturbed motion (caused
by perturbations of its state of absolute or relative equilibrium) which
corresponds to a stable motion in the mechanics of systems with a finite
number of degrees of freedom. Liapunov has shown that the difficulty may
be removed if the stable state of equilibrium is defined as the state
which, after being subjected to sufficiently small perturbations, remains
arbitrarily close to the original state. This proves to be adequate, at
least until string or leaf shaped projections form on the surface of the
fluid. Such projections may be large in linear dimensions, but their
volume is small and, therefore, they carry small amounts of energy.

We shall assume the above definition and, following Liapunov, shall
formulate certain pertinent concepts applicable to our problem. We shall
compare the form F, of the relative equilibrium and the form F at an
arbitrary instant of the perturbed motion; the motion of the particles
of the fluid will not be considered, but we shall take into account the
value of the kinetic energy of the fluid. The form F is determined by
the free surface ¢ and the walls of the cavity which, at a given instant,
are in contact with the fluid. If the perturbed motion is sufficiently
close to the unperturbed motion, in the coordinate system xyz connected
with the rigid body, the forms F, and F differ only in the free surfaces
o, and 0. Since the fluid is incompressible, the volume of the form F is
obviously equal to the volume of the form F.
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Let us consider a point P of the surface ¢ and the point P, nearest
to P, of the surface o,. With changes of the position of the point P and,
consequently, the position of the point P, the distance PP, changes;
for certain positions of the point P it assumes its maximum value at a
given instant of time. This maximum value has been called "the separa-
tion" by Liapunov. We shall denote this quantity by l. We shall use also
the total deviation A of the form F from the form F, which is defined as
the volume of the part of the form F which is within the form F, or,

equivalently, the volume of the part of the form F, which is within the
form F.

It is obvious that if the separation has a given value I, the
deviation A has a certain maximum value which can be expressed as ly(1l),
where y(l) is a positive function having a certain definite upper bound.
If 1 does not exceed an arbitrary number A, the function y(l) has a
minimum value which is different from zero. The minimum value of the
deviation A for a given value of | is always equal to zero [2].

During a continuous motion of the body and the fluid, the separation
I and the deviation A are, obviously, continuous functions of time.

We shall introduce now the following definition of stability of the
motion of the system in the case of partial filling. Suppose that certain
initial perturbations are applied to the system and we consider the sub-
sequent perturbed motion. The considered motion of the system is stable
if the initial value of the separation, the initial relative velocities
of the particles of the fluid, and also the initial perturbations of the
coordinates and velocities of the body can be selected sufficiently small
in order to make the absolute values of the coordinates gq;, the velo-
cities q;', the kinetic energy 7}(2) of the fluid, and the separation 1
smaller than certain given arbitrarily small limits, for any time, or at
least until the deviation becomes smaller than certain given, arbitrarily
small, values. In the opposite case the motion of the system is unstable.

Thus, the unperturbed motion of the system is stable if for arbitrary
positive numbers L, and L, (which may be arbitrarily small), it is
possible to find a positive number A such that for all the initial values
of the coordinates g;, and the generalized velocities q;," (i =1, ..
n - 1) of the body, of the separation l;, of the deviation Aj, and of
the relative velocities of the fluid u,, v,, w,, satisfying the condi-
tions

*r

gl <M gl <M [LISA lag ISA, |2 1R
[we | <A Ag > el (2.1)
and for any t >t,, or at least up to the time when
A> el (2.2)
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the following inequalities are satisfied

| ¢ | <Ly, | 1| <Ly, | @' | <Ly, | T,® | < L, (2.3)

Here, & denotes a positive number smaller than the mininum value of
the function y(l) for |l|<;Ll; the quantity el may be considered as an
admissible deviation of the fluid. We note that in the case of complete
filling of the cavity with the fluid, the condition related to (2.2)
should be omitted.

In the following discussion we shall encounter the concept of minimum
of the expression W. If W is a function W(q,, ..., q,.,, ko), the minimum
of this function for a fixed value of the parameter k; will be meant as
the isolated minimum with respect to the variables q,, ..., q,., which
are its explicit arguments. In the case of partial filling we shall
assume the following definition, due to Liapunov [1], of the isolated
minimum of W.

If ¥, is a minimum of the expression W for the steady motion being

considered with ¢; =0 (i =1, ..., n-1), 1 =0, A =0, then there
exists a sufficiently small positive number E such that for all the
values of the coordinates of the body g, (i =1, ..., n - 1) the separa-

tion !, and the deviation A, satisfying the conditions

lei | <E, |lI<E, A> el

(where ¢ is a positive number, smaller than the minimum value of the
function y(l) for |1} <E), all the values of the difference W - ¥, are
positive, and equal to zero only if q; =0 (i =1, ..., n-1), 1 =0,

A = 0. We note that for any given value of ! the difference W - W, may
assume arbitrarily small values if the position of the body and the form
of the fluid correspond to the values |qi| and A which are sufficiently
small. But the limiting case where the condition ! # 0 results in gq; = 0
(i=1, ..., n=-1), A =0 (so that ¥ - ¥, is also zero) is impossible
if only those forms that can be taken by the fluid are considered. In
order to remove this inconvenience the condition A > el has been intro-
duced.

Theorem 2.1. If for a steady motion of the rigid body with the cavity
filled with fluid the expression

1 kot
W=g35+V

has an isolated minimum ¥,, then the motion is stable.

Proof [2]. we shall perturb the steady motion of the system considered
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by assigning to its points certain sufficiently small initial displace-
ments and velocities. Without external actions, the system will move
accordingly to the integral of energy (1.5), which may be written in the
form

1 k? — kq? 1 K — k?
Tyt W5 —5 =T WO 4 5 = 2.4)

where the superscript (0) denotes the initial value of the corresponding
quantity, and &k is the area constant of the perturbed motion.

Let A be an arbitrarily small positive number not exceeding the number
L,, which will always be assumed smaller than the number E introduced
above. We denote the smallest value of the expression W by ¥, if the
separation | or one of the coordinates q; (i =1, ..., n—=1) has its
absolute value equal to A, while the remaining quantities and the devia-
tion A satisfy the conditions

Iqi|<Ar lll<Ar A>Bl

Since, according to the assumption, the expression W has the minimum
¥, for the steady motion, we have the inequality

W,>W,

I1f, however, 1l and |qi| are sufficiently small and A > el, the differ-
ence |’ - lbl becomes arbitrarily small. We assume 4 small enough to
have the inequality

[Wi—Wy | <Ly (2.5)
satisfied.

The initial values of the coordinates q; and the separation l can be
selected such that the initial value of the expression W be smaller than
the value W,

wo <« w, (2.6)

With this selection of the initial state of the system, we shall
assume that the initial values of the coordinates q; and the initial
form of the fluid satisfy the inequalities

lg;1<C 4, <4, A>el

For an arbitrary intial position and form of the fluid, the initial
velocities can be chosen in such a way that the constant quantities

% [ K2 — kg2 ! 7,40

be arbitrarily small. We take the values of these constants for which
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1 1 1
TR =k (55— 5 ) 7O WO <, @7)
for any values which may be assumed by S if the conditions are satisfied
lg:1< 4, <4 (2.8)

Considering the quantity A, which appears in the definition of sta-
bility and which determines the region of initial perturbations, we shall
assume 1ts value in such a way that, fulfilling the conditioms (2.1), we
can satisfy the inequality (2.7) for all the values of S under the condi-
tions (2.8). With this choice of the initial conditions we have, accord-
ing to the energy integral, the following relation

T4+ WLW, 2.9
for t 2>t°. as long as the conditions (2.8) are satisfied.

This implies that ¥ < ¥, at least as long as [qil and ! do not ex-
ceed A, Bince the initial values of the coordinates g; and the separation
! are, by assumption, smaller than A, with the initial deviation A > el,
and because q., ! and A vary continuously in time, the values lqil and
lll cannot become larger than A without being previously equal to 4. But
the equalities

1Qi!:A (i:i,...,n——i}, ‘[I=A
are, on the basis of (2.9) with A > e¢l, obviously impossible.

The inequality (2.9), with (2.5) taken into account, implies that
!I}‘ < L,. We therefore conclude that

lg0<ls  (=1,....,n—1), [T I<L,

Consequently, if the motion of the system progresses continuously,
i.e. ¢;, 1l and A vary continuously in time, we have from the initial in-
stant of time

lgl<hy (¢:1<Ls, [1|<L, |T\®|<L, A>el

These inequalities hold as long as the last of them is true, The theorem
is thus proved.

Let us note that in the case of complete filling the conditions for !
and A are superfluous and under the assumptions of the theorem we have-

lg <Ly lg/l<La (i=1,..,n—1), [T\®|<L

for any time ¢ 2>t°.
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Note 2.1. Liapunov [2] noted that in order to characterize the differ-
ences between the perturbed and unperturbed forms of the fluid, instead
of I, we may introduce certain other qguantities which become equal to
zero only for the unperturbed form. For example, the total deviation A
may be chosen as such a quantity. Then, in a similar manner as above, we
can prove that if ¥ has a minimum ¥, for a steady motion of the body with
the cavity partially filled with fluid, for sufficiently small initial
perturbations, Iqil' Iqi'l (i=1, ..., n=1), A and Tl(z) do not exceed
arbitrarily small values at any time prescribed. The minimum W, should
be understood in the sense that ¥ — W, > 0 for all the values !?i! and
A which do not vanish simultaneously and are smaller than certain con-
stant limits.

Note 2.2. If the theorem of kinetic energies and the theorem of areas
hold for the motion of the rigid body with the cavity filled with fluid
with respect to the mass center of the total system, then Theorem 1.1 is
valid also for this motion.

In this sense, Theorem 1.1 represents a generalization of the theorem
of Liapunov concerning the stability of the equilibrium configurations
of a rotating homogeneous fluid whose particles attract each other accord-
ing to Newton’s law.

in fact, if the system consists only of a gravitating fluid, it is

1 ko2 b dvdv’
W=357%" “z‘SS ;

and if for an equilibrium configuration the expression T = ¥W/nf has its
minimum, then this form of equilibrium is stable [1,2].

Conclusion. If for a state of equilibrium of a rigid body with a
cavity filled with fluid (for k, = 0), the potential energy of the system
V has an isolated minimum V;, then this state of equilibrium is stable

l6].

We note that this conclusion is valid also in the case of relative
equilibrium of a rigid body with a cavity filled with fluid.

Let us assume, for definiteness, that in addition to the forces de-
rived from the force function V, nonconservative forces exist also and
they are reducible to the moment N along the [-axis. The magnitude of
this moment is such that the angular velocity o of rotation of the rigid
body around the [-axis remains constant at any time. In this case, in-
stead of the integrals of energy (1.1) and the areas (1.2), we have the
equations [4]

dG
d(T +V)=Nodt, —*=N
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from which we obtain
T +V — oGy = const

Introducing again into considerations the moving coordinate system
§,m;0 and recalling the relations (1.3), we can represent the energy con-
dition in the form

7, +V — —i-sz = gonst

The states of relative equilibrium of the rigid body with the fluid
are determined by the condition (1.7). Repeating almost literally the
proof of Theorem 2.1, we easily show the validity of the following
theorem.

Theorem 2.2. If in a state of relative equilibrium of the rigid body
with the cavity containing a fluid the expression

W, =V—-—:—~m2S

has an isolated minimum, then this state of relative equilibrium is
stable.

As we have already noted, if the equality (1.4) is fulfilled, the con-
dition (1.7) is equivalent to equation (1.10). This makes possible the
construction of the state of relative equilibrium for a constant angular
velocity w at steady motions with the existence of the integral of areas
(1.2). It is easy to see that if the expression ¥ _has a minimum for a
state of relative equilibrium, then the express1on ¥ has a minimum for
the corresponding steady motion [4] also.

In fact, let l be a minimum of the expression W j.e. in a suffi-
ciently small vicxnity of the state of relative eqnllibrium

t
V— Vo — 5 @ (S — S0) >0

and let us assume that for the corresponding steady motion ¥ does not
have a minimum, i.e. in a sufficiently small vicinity points exist for
which )

1 1 1
?k02<'§;—-37)—-—V+V0>,0

Substituting Sow for ko in the last inequality and taking into account
the preceding inequality, we obtain

1 S S5 —So>0

which is impossible. Conseguently, if the state of relative equilibrium
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of the rigid body with the fluid is stable for @ = const, then the cor-
responding steady motion is stable for Gg = const also.

Let the expression W have a minimum for a given value of the parameter
ky, i.e. let the steady motion be stable. If we now continuously change
the value of the parameter k,, the roots of equations (1.11) will trace
a branch C of the "equilibrium" curve. If the expression W varies also
continuously, then for all the points of the curve C, for which ¥ main-
tains its minimum value, the steady motions will be stable. The change
of stability on this branch may occur only at the bifurcation points [5).

3. In the preceding considerations we have assumed that the fluid in
the cavities of the body was nonviscous. We shall investigate now the
motion of a rigid body with a viscous fluid, whose coefficient of visco-
sity will be denoted by u. The motion of an incompressible fluid is de-
scribed by the Navier-Stokes equation

%}::F-—%gradp—{-w&v, divv =20

where v = u/p is the kinematical coefficient of viscosity, p is the
density, and p is the hydrodynamic pressure. We assume that on the free
surface the stress vector is p, = -pgn (with n being the unit vector
normal to the free surface, p, = const), and that at the rigid walls the
fluid does not move with respect to the rigid boedy [7].

Using the above equations and the boundary conditions for the fluid,
as well as the equations of motion of the rigid body, it is easy to ob-
tain the following equation for the rate of dissipation of energy

d _ a?Jl 2 6vg % avs 2
T+ == 2[(F) + (F) + (F)]+
avs 3‘02 2 avl 6v3 2 _{i_yl ivi 2
+imr Rttt E TR 6
valid under the assumption of Section 1 concerning forces acting on the
system and continuity of its motion.

It follows from equation (3.1) that the motion of a rigid body with a
cavity containing fluid is not accompanied by dissipation of energy (due
to viscosity) only if at every point of the fluid the following equations
are satisfied

dvy _ vy vy =0, %_z;i+ dvy _ ny + i?;g - 66? + Zz:;

BE T Tom a 8t T et
Equations (3.2) express the conditions that the line-elements in the
fluid neither elongate nor contract [7]. This is possible only if the

=0(3.2)
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fluid moves like one rigid mass together with the rigid body which en-
closes it.

Assuming, as previously, that the dissipative forces do not act along
the cyclic coordinate g, and taking into account that viscous forces are
internal forces, it is easy to establish the existence of the integral
of areas (1.2) for the case of viscous fluid. Introducing, as in Section
1, the system of coordinates On,y,{ rotating around the axis 07, on the
basis of equation (3.1), we obtain instead of equation (1.5) the follow-
ing inequality

k2 — ko?

T+ WL BB o o LRk

2 s

(3.3)

Theorem 3.1. 1f for a uniform rotation of the rigid body with a
cavity containing viscous fluid, the expression W has an isolated minimum,
then this motion is stable, and any perturbed motion sufficiently close
to the unperturbed rotation will approach, in the limit, the steady
motion of the system as one rigid body, provided that the condition A>el
is always satisfied.

Proof. In this case, instead of equation (2.4) we have the inequality
(3.3), and in order to prove the stability of uniform rotation of the
rigid body with viscous fluid it is only necessary to repeat the proof
of Theorem 2.1. We shall prove the second part of Theorem 3.1.

Let us consider an arbitrary perturbed motion of the system which at
the initial instant of time is sufficiently close to the unperturbed
motion. Suppose that the inmequality A > el holds as long as |l| does not
exceed Ll' In this case the perturbed motion will always be sufficiently
close to the stable unperturbed motion. According to equation (3.1), the
total mechanical emergy of the system is being dissipated during the per-
turbed motion until the fluid and the rigid body start moving as one
rigid mass. Under these circumstances, there are two possible conclusions:
either the total mechanical energy continuously decreases and the system
finally comes to rest, or the system approaches a uniform rotation as one
rigid body which corresponds to the extremum of the expression
1/2(k%/S) + V. The first conclusion, with Gr # 0, is contradictory to the
existence of the integral of areas (1.2), and thus only the second con-
clusion remains valid [8]. The theorem is proved.

Note. In a similar way we can prove also that Theorem 2.2 is true for

the case of viscous fluid if during the motion w = const.

Theorem 3.2. If for an isolated steady motion of the rigid body with
a cavity containing viscous fluid the expression ¥ has no minimum, then
this motion is unstable.
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Procf, For the considered motion let the roots of equations (1.11) be
g; =0 (i=1, ..., n~1} and !6 = . We assume that there exists a
sufficiently small positive number L, such that if all the coordinates
g; and the separation | satisfy the conditions

le; 1<, IS (3.4)

the expression ¥ has no extremum except at the point g; =0 (e =1, ...,
n - 1), { = 0. This assumption implies that the investigated steady
motion proves to be isolated. Since ¥ does not have a minimum for this
motion, within the region (3.4) another region exists where ¥ < 0, Thus,
in a region of small absolute values of the coordinates 9 the separa-
tion I, and the relative velocities q;’, u, v, », we can find - under
our assumptions ~ the region of arbitrarily small values of the coordi-
nates and velocities for which

Ty W <0

We select the initial perturbations from this region in such a way
that the area constant k remains equal to ke. For ¢t > the system
moves according to the relation (3.3), which in present conditions takes
the form

T4 WL 4+ w0

Suppose, contradicting the proposition, that the motion is stable.
This means, according to the definition, that at any time, or at least
as long 88 A > gl, the conditions (2.3) are satisfied.

If these conditions are satisfied, it is obviously possible to find a
positive number L, depending on L, and sz which gives the upper bound
for the absolute value of the mechanical emergy of the system

T+ Wi<L (3.5)

But in the region determined by the inequalities (2.3), equations
(3.2) are never identically satisfied, except for the unperturbed motion
being investigated. Consequently, the energy of the system will be con-
tinually dissipated and it will increasingly differ from its initisl
value, Finally, the absolute value of the energy will exceed L, and this
contradicts the condition (3.5). Therefore, the system will move beyond
the region (2.3). The theorem is thus proved.

4. We shall consider now the problem of stability of steady motion of
a8 rigid body, with a cavity filled completely with fluid, attracted
according to Newton’ s Law by a fixed center.

The center of attraction O will be assumed as the origin of the fixed
coordinates Ofn{, while the mass center O, of the body with the cavity
containing fluid, will be assumed as the origin of the moving axes x,y,z
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which coincide with the principal axes of inertia of the system. The posi-
tion of the system is determined by the coordinates &, n, { of the mass
center 01, and the three Eulerian angles. Introducing spherical coordi-
nates R, y, ¢ of the mass center, we have

E=Rcosycosq, n = Rcosysing, L= Rsiny (41)

The potential energy of the attractive forces can be represented with
sufficient accuracy in the form [o]

A+ B+C>

M 3
V=—/§+77'1—3(A712+an+0132— 3 (4.2)

Here, f is the gravitation constant; M is the mass of the system; 4,

B, C are the principal central moments of inertia of the system; y,, v,,
y; are the directional cosines of the line 00,, with respect to the axes
x, y, z. The moment of inertia of the system with respect to the axis Of
is

§ = MR2cos?y + ABi? + BR.? + CBs? (4.3)
where B,, P,, P, are the directional cosines of the axis O with respect
to the axes x, y, z.

The quantities P, and y; are connected by the obvious relations

T2+ T2 4 18 =1, B2 4 B2 + Bo® =
Eliminating Bz and y, from (4.2) and (4.3) by the use of the above re-
lations we obtain

M 3 A+ B—2C
=——f§+—2—',%[(A——C)T12+(B—C)Tzz~_JL—‘g—“}

§=MR2cos? Y+ B + (A — B) B2+ (C — B) B4t (4.4)
Equations (1.11) are, in this case, satisfied by the following values

of the variables [9]
R=Ry, ¢$=0, B=R=0, mNn=1=0 (45

with the constant Ro satisfying the equation

ko? M3 f
:S.:—ZMROZEE—}——Z—E?(A—}—B—ZC) (4.6)

where
So:MRJ‘—f—- B, kD:‘So(J)o

The particular solution (4.5) describes the motion of the mass center
of the system O, along a circular orbit of the radius R, situated in the
plane OEn, with the angular velocity w,: the axis 0,z coincides with the
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line OOl, the axis 01’ is tangent to the orbit, and the axis Oly is
parallel to the axis O[. This motion will be assumed as the unperturbed
motion, and we shall investigate its stability.

For this purpose, it is necessary to find the conditions for a minimum
of the function ¥ corresponding to the motion (4.5). With (4.5) and (4.6),
we have

LA PO A SRS BN A

oR® ~ R Sol T 2 R¢? So
0w 0w W
g = MBfod, ey =(B—Aed, Fzy=(B— C) wo?
*W i W 7
o =SEFA—0)  Ga=3ps@B—0

and all the remaining second derivatives of the function W equal identi-
cally to zero.

Thus, the conditions for a minimum of the function F reduce to the in-
equalities

B>A>C (4.7)

which, according the Theorem 2.1, represent the sufficient conditiomns of
stability of the unperturbed motion (4.5), of the rigid body with a
cavity containing fluid, with respect to the variables [10]

Rr ‘P’ T, Tz T3 Bly B?; Ba

In the case of a viscous fluid, with the conditjons (4.7), the per-
turbed motion will damp out approaching the steady motion in the form of
uniform rotation of the whole system around the vector of angular
momentum.

5. As the second example, we shall consider the problem of stability
of the rotation around the vertical axis of a heavy rigid body with a
cavity containing fluid, whose one point O is fixed. The fixed axis {
will be directed vertically upwards, and we shall introduce a moving co-
ordinate system Oxy:z connected with the rigid body.

The potential energy V and the moment of inertia with respect to the
{-axis are

V = Mg (@11 +yor2 + 20 V1 — 122 —12%) (5.1)
S=(A—-C1?+B—C)12+C—2(Dr2+ E1)) V1 — 1 — 122 — 2FNT2
where M, %o, Yor %, are the mass and the coordinates of the mass center

of the system; g is the acceleration in the gravity field; 4, B, C, D,
E, F are the moments and products of inertia with respect to moving axes;
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Y1 Yo Y3 = J(l - ylz - yzz) are the direction cosines of the (-axis
with respect to the axes x, y, :z. Equations (1.11) are, in this case,

ow P — (Dye 4+ EYid
E=_m02[(A_C)Tl_EV1“TIZ _722—F72+VT—T—12——'?2~2:|+
/ 2071
M Tp— ————p :0
+ g( Vi—n“—h’)
ow S (D2 + EY1) 12
'E=—%{W—QH—DVF4%4%JW+7ﬁif$;+
Zo7Y2
MglW— ————= | =0
+ g( 'Vi—ﬁﬂ—rf)
For any magnitude of the angular velocity @y, they are satisfied if
Nn=7=0 (5.2)
D=E=0, Io=yo=0 (53)

i.e. 1f the axis of rotation :z coincides with the vertical axis and is a
principal central axis of inertia of the system.

We assume the above conditions, and we shall consider that the axes «x
and y also coincide with the remaining principal axes of inertia of the
system passing through the point O.

With the conditions (5.2) we have

I*w *>w Ll
= (C — 3 — =(C— 3 _ —
= (C — A) g — Mgs,, Fro (C — B) @g* — Mgz, o = 0

In the case of complete filling of the cavity with fluid, the condi-

tions for a minimum of the function l(yl, Yo, ko) reduce to the follow-
ing inequalities

(C — A) > — Mgz >0, (C — B) we® — Mgzo >0 (5.4)

which, according the Theorems 2.1 and 3.1, are the sufficient conditions
of stability of a heavy unsymmetrical top with a cavity filled with
f1uid [11].

If the fluid partially fills the cavity, then equation (1.12) of its
free surface 9 is, in the investigated steady motion, that of a para-
boloid of revolution

—; @o? (2% 4 y?) — gz = comst (5.5)

The form F of the fluid in a perturbed motion can be produced by
superimposing a layer of fluid of variable thickmess x on the free sur-
face (5.5) of the umperturbed form F, [4]. since the volume F is equal
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to the volume Fb. the condition should be satisfied

S xds =0 (5.6)

In the case of a stable motion of the top with the fluid, the gquantity
X is of the same order as the quantities y, and y,; therefore, neglect-
ing small quantities of higher order, we have

W Wy = {1C — 4) 00— Mgrel 1+ [(C — B) ot — Mgzo] 1" +

+20{ (@' 24 ) (o1 +ym) xdo + o | VST @ F 0 T Py +

+ 9 (o e+ v 1) - - 6.7

T

In this, we have used the examples of the calculations of the integrals
over the volume T of the perturbed form F, developed in the theory of
stability of the equilibrium configurations of rotating fluids [4].

The relation (5.7) indicates that the conditions (5.4) are necessary
for the expression ¥ to have a minimum for a steady motion of the top
with a cavity partially filled with fluid [1].

Rough estimates of the sufficient conditions for a minimum of the ex~
pression W can be obtained by writing the right-hand side of equation
(5.7) under the integral over the surface ao,and requiring that the inte~-
grand be positive-definite with respect to the variables y;, v;, X.

The sufficient condition of stability of the top with a cavity
partially filled with fluid, can be derived by expanding the quantity ¥
in a series of a complete system of eigenfunctions of the corresponding
eigenvalue problenm.

Let us assume, e.g. that the cavity has the form of a body of revolu-
tion whose sides are generated by rotating a convex plane curve around
the z-axis, while the top and the bottom are planes

2=h—¢, z=h-te
We assume, for simplicity, that the square of the angular velocity
WS> 2g (h +¢) (5.8)
and thus, the free surface (5.5) is not very different from the circular

cylinder
234 y? = a2
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Neglecting that small difference we can assume [12}

L= 2 (4 costp—i—Bksmq;)cos (z——h+c) (5.9)
k=0

and we obtain, according to the relation (5.7)

i
W — Wo = ?{I(C —— A) (l)os —_ A.‘IgZol ’hz + I(C — B} f.!)o2 — Mgza] ng +

N+ B Tz
-+ 4pmcathot (Aat + Bata) — 16pa%00 o 2 T T

+ pria%con® [2(Ad+ Be?) + Z (42 + Bl +
k=1
It is easy to show that the right-hand side of this equality is posi-
tive-definite with respect to the variables Y1 Yo Ak' Bk (k=0,1,2...)
if the single condition is satisfied

3h2 2
(C——A—-mezgc ;c)mz—Mgzo> 0 (5.10)
with A > B

According to Theorems 2.1 and 3.1, the equality (5.10) with the con-
dition (5.8) is, in first approximation, the sufficient condition of
stability of rotation around the vertical axis of a heavy top with a
cavity partially filled with fluid. The quantities A, B, C, and zg, 1in
the inequality (5.10), should be calculated for the unperturbed position
of the top and fluid.

The author expresses his gratitude to L.N. Sretenskii for discussing
this paper.
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